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EFFECTIVE-FIELD METHOD IN THE STATICS OF COMPOSITE MATERIALS 

V. A. Buryachenko and V. Z. Parton UDC 534.4 

In this paper we study a linearly elastic composite medium consisting of a uniform 
matrix containing a random number of inclusions which have an arbitrary shape and nonuniform 
bulk mechanical properties. The classical problem [i-3] of estimating the effective moduli 
and average stress concentrators on inclusions is solved. The approach proposed in this 
paper is an extension of the effective-field method (EFM), presented in [4-6] for the case 
when the mechanical properties of the matrix are the same as these of the comparison medium. 
The generalized EFM includes as particular cases the well-known methods of structural me- 
chanics: the effective-medium method [3], the generalized singular approximation method [3], 
the conditional moment method [7, 8], the Mori-Tanaka-Esheiby method [9, i0], and methods 
based on variational principles [2]. 

i. General Equations. Consider a macroscopic region w with characteristic function W 
and containing a random set X = (Vk, Xk, ~k) of ellipsoids v k with characteristic functions 

V k and centers Xk, forming a Poisson set, semiaxes a~(a~ > a~ >_ a~), and Ruler angles ~k- 

The local equation of state of the material, relating the stress tensor o(x) and the strain 
E tensor E~x), is given in the form 

(y(x) ---- L(x)e(x),  ( 1.  i ) 

where L ( x ) ,  which  i s  a t e t r a v a l e n t  t e n s o r  o f  t h e  e l a s t i c  m o d u l i ,  i s  assented t o  be homogeneous 
[ 

in the matrix v~ v: h~ vh): L(x) = L ~~ in each inclusion Vk, where k = i, 2, .... 

and L(x) = L (k) (x) is, generally speaking, an inhomogeneous function of the coordinates. 
Substituting Eq. (i.i) into the equation of equilibrium with given boundary conditions on the 
displacements u(x), we obtain a differential equation for the displacements: 
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VLcV u :=--vL,(x)v u" ( 1 . 2 )  

H e r e ! V  i s  t h e  s y m m e t r i z e d  g r a d i e n t  o p e r a t o r  and  L l ( x )  e L ( x )  - L c .  We i n t r o d u c e  t h e  homog-  
e n e o u s  t e n s o r  o f  e l a s t i c  m o d u l i  L c = c o n s t  o f  t h e  c o m p a r i s o n  medium; i n  t h e  g e n e r a l  c a s e ,  

L c ~ L ( ~  R e d u c i n g  Eq.  ( 1 . 2 )  t o  an  i n t e g r a l  e q u a t i o n  and t r a n s f o r m i n g  i t  a c c o r d i n g  t o  t h e  
s cheme  o f  [ 4 - 6 ] ,  we f i n d  

e (x) = % + S U (x - -  y) [L, (y) e (y) - -  <L~e>] dy, ( 1. 3)  

where U(x - y) = VVG(x - y); G is the Green's tensor of the Lame equation for an unbounded 

V ~ -'" ~ = -16(x) and 6(x) is a delta function, in Eq. comparison medium with modulus Lc: ncV~X) 
(1.3) and below <(')>, <(')Ixl, .... Xn; Xn+1, .... Xm> denote the average and conditional 

average over an ensemble of statistically homogeneous and ergodic field X under the condition 
that inclusion are located at the points xl, ..., Xm # Xn+z, ..., xmand ~0 ~ <g>- We also 
define the average over the volume of the component as 

<(.)>~ =v~z [(.)V,~(x)dx, v-'~----mesv, z (<z----0, t ,  . . . ) .  ( 1 . 4 )  

in the derivation of Eq. (1.3) it was assumed that the region w contains a statistically large 
number of inclusions v; all random quantities considered below are described by statistically 
homogeneous random fields, so that the averaging over an ensemble can be replaced by averaging 
over the volume; the distance p = p(x) as a function of x from the boundary 8w of the region 
w is much greater than the characteristic size of the inclusions a!/p << i. For this reason, 
the subsequent solution of the problem (1.3) is of zero-order accuracy with respect to the 
small parameter a!/p. 

in order to estimate the effectivemoduli we average the local equation (I.i) over the 
volume <o > = L (~ (e > + ((L(x) -- D~ > . Then 

L* ---- L (~ + B*, <LteV > - -  L(1 ~ <eV> ~ B* <e> ( 1 . 5 )  

Thus, in order to find the effective parameters we must estimate the average value of 
I 

the polarization tensor inside the inclusions <(L(x) - L\~ Equation (1.3) is much 
easier to solve when the deformation fields are studied only inside the inclusion. There 
are two fundamentally different approaches to ensuring that the integration on the right- 
hand side of Eq. (1.3) extends only over the volume of the inclusions, in the first one we 

postulate L c = L (~ Then L(l~ - 0 and we write Eq. (1.3) as 

8 (x) ---- t o + j" U (x - -  y)  [L 1 (y) s (y) V (y) - -  <L,eV>]  dy. (1.6) 

in the second one we choose L c quite arbitrarily, but we make the additional assumption that 
the deformation fields in the matrix are homogeneous: g(x) ~ <e>0, xe v 0. Then Eq. (1.3) is 
equivalent to the equation 

e (x) = % + S U (x - -  y) [ (L  1 (y) e(y) - -  L(~ ~ <e>c ) V (y) - -  

- <(LI  - v>] 
(1.7) 

We introduce the notation M1(y)~L1(y)V(y), a(y)~--L~)<e>oV(y) and represent Eq. (1.7) in the 

unified form 

e (x) = e o + ~ U (x --- y) {M 1 (y) e (y) + ~ (y) - -  <M~e + ~>} dy, (1.8)  

and in addition for L c ~ L (~ in Eq. (1.8) there exists ~(y) ~ 0. 

in order to calculate the averages <Mlg> in Eq. (1.8), which are required in order to 
estimate the effective modulus L", we introduce ~(umlu ~ ..... un) - the conditional distribution 
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function of the m-th inclusion in the region with fixed inclusions in the regions vi, ..., 
v n. As far as the functions ~(vmlvl .... , un) are concerned, it is known that ~(vmlv I .... , v,~) = O/ 

/ 

for x m lying inside some correlation well, consisting of the union of the regions 
D vj ~ vj (j = i, . .., n) with characteristic functions V?3, and q(vm]vl, ..., v,)-+ ~(vm) as 

l i 
Ix i - Xml ~ ~, i = i ..... n. We average Eq. (1.8) on the sets X(-[vl), X('IVl, v2) with 

fixed inclusions vl; v I and v 2, and so on with the help of different distribution functions 

~(v~[vi ..... u~). This gives an infinite system of coupled integral equations: 

(x) - -  ~ V (x - -  y) v ,  (y) <M~ (y) s (v) + ~ (Y) I x~> dy = 

= ~o + ~ U (x - -  y) [<Mx (y) ~ (Y) + cz (Y) I Y; x> - -  <M~s + ~z>] dy, 

s (x) - -  ~] ( U (x - -  y) Vi (y) <Mi  (y) e (y) + a (y) ]xl,  . . . ,  xn> dy = 

= SO + S U (.z' - -  y) [<M 1 (y) E (y) + (z (y) [y] xi, . . . ,  Xn> - -  <MIE -~ (~g>] dy. 

(1.9) 

Since x in the n-th row of system (1.9) can run through the values in the inclusions 
vi, ..., v n, the n-th row actually contains n equations. We designate the right-hand side 

of the n-th (n = i, 2, ..) row by the field ~ ~ .. . E~x)i, . n, which physically is simply the 

formation field in which the fixed n inclusions are located. Each inclusion v i from the 
chosen fixed inclusions is located in the field 

#~ (x) = ~  (x), ...... + ~ i U (x--  y) VI (y) [M~ (y) a (y) + m (Y)I dy, x ~ v i .  
j # i  " 

( i . io )  

As follows from the structure of Eqs. (i.9) and (i.i0), the stress fields in the inclusions 
v i depend only on, generally speaking, the inhomogeneous field E i in the region vi. In 
order to be able to neglect below the dependence of the terms in system (1.9) on xev i, we 
average each n-th row (n = i, 2, ...) over the volume of the i-th inclusion (i = i, ..., n), 
and then 

j = l  

+ ~ (y) I ~ . . . . .  ~ >  @d~ = ~o + }C' .f ~ V (~ - -  v) V~ (~) V~ ( v ) [ < i ,  (y) ~ (V) + 

+ cr (y) [y; x 1 . . . . .  xn> - -  <Ll~rls + ~>1 dydx. 

(i.ii) 

Under the assumptions made about the homogeneity of the tensors e0,L (~ and L c and the 
statistical homogeneity and ergodicity of the field, system (i.ii) is exact only for L c = 

L (~ Then a(y) ~ 0. For L c ~ L (~ system (i.ii) is obtained under the additional assump- 
tion that the deformation field in the matrix is homogeneous, in the derivation of Eq~ (I.ii) 
no restrictions were imposed on the shape and mechanical properties of the inclusions and the 
structure of the conditional distribution function ~(vj]v I ..... v~). 

2. The Effective Field. in order to close system (i.ii) and solve it approximately, 
we adopt the hypotheses of the effective-field method [4, 5]: 

Hi) every inclusion v i is an ellipsoid, can be approximated by a point when analyzing 
the stress fields outside it, and is located in a homogeneous field e%xi);-r 

H2) for sufficiently large n we have the closure ($[x) I .... , j ..... n+l>i = <e[x)1, 

.... n> i, where the right-hand side of the equality does not contain the index j # i, 1 ! 

J ! n and xev i. 

For eilipsoidai inclusions v i we obtain from Eqs. (i.i0) and (i.ii) the algebraic equa- 
tion 

<~(x) >~ - <U(x) >~ <M,(=)Kx) + e(x) >~ = <~x) >i, ( 2 .  i ) 
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in which, according to a property of potentials inside and ellipsoid [i, ii], the tensor 
<U(x)> i for xev i. The assumption that inclusions are eiiipsoidal can be weakened; this will 
be demonstrated in Sec. 7. in order to solve system (i.ii) it is necessary to know how 
<g~x)~i, ~Ml~x)e~x) + a(x) >i depend on <e~xi)~. Since problem ~z.l) is linear, there exist 
constant tensors A i and C i of rank 4, such that 

<~(x) >~ = A ~ ( ~ x 3  >i + C ~ ( x 3 ,  

(M,(x)e(x) + a(x) >~ = R~ ~(x,)  h + F,~(x~) ( 2 . 2 )  

(Ri  = <U (x)>T 1 ( A ~ -  I)~i,  Fi = <U (x)>/*Ci~).  

/ ,  

example, for a homogeneous eiiipsoidal inclusion v i with M~ x)- = const For 

Ai = ( I  + PiMp~ - ' ,  Ci = --  AiPi. ( 2 . 3 )  

Here Pi =--f U(x--y)Vi(y)dy (x~vO is a constant tensor, which does not depend on the elastic 
moduli and dimensions (but not the shape) of the ellipsoid vi; the rules for calculating Pi 

in Eq. kz.J) for different cases of anisotropy of the shape of inclusions and properties of 
the matrix are examined in [i]. The tensors A i and C i can be found, for example, numerically 

for any structure of the field e(x) (x ~v i) and they depend on the structure of 
the field, in what follows, in order to obtaln understandable results we assume that the 
field ~(x) is weakly inhomogeneous and homogeneous according to the hypothesis HI inside any 
region vi: ~(x) = e(x i) xev i. in the case of a homogeneous field r v i) problem (2.2) 
has been solved analytically for a layered ellipsoid [12] and a layered sphere [13]. 

We interpret the approximation of point-like inclusions in hypothesis HI as meaning 
that the following equation is satisfied: 

J' U (x - -  y) V~ (y) (M1 (y) e (y) + a (y)) dy = ( 2 . 4 )  

f o r  x # v i .  The  r e l a t i o n  ( 2 . 4 )  m e a n s  t h a t  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  d i s t u r b e d  f i e l d  o f  an  
i n c l u s i o n  o f  f i n i t e  s i z e  i s  i d e n t i c a l  a t  i n f i n i t y  t o  t h e  a s y m p t o t i c  b e h a v i o r  o f  a p o i n t  i n c l u -  
s i o n  w h i c h  s i m u l a t e s  i t .  

3 .  E s t i m a t e  o f  t h e  i n t e r a c t i o n  o f  a F i n i t e  Number  o f  i n c l u s i o n s .  Unde r  t h e  h y p o t h e s i s  
HI, system (i.ii) with fixed values (^~ ~z,. ~" gkx) ..,n)z (xevi) of the right-hand sides of the 
equations becomes algebraic: 

+ ~ (y) lx~ . . . .  , x~>flx@ = < ~ ' ( / h  . . . . . .  >. 

(3.1) 

. ^ r  ~ _  
Using Eq. (2.2) for a single inclusion in the field <r i (i.i0) (i = i ..... n), we 
rewrite Eq. (3.1) in the form 

) # i  

X {Rj (e(y)  [ x 1 . . . . .  x~)j + Fjo~} dxdy = ('e(x)l ..... n). 

(3.2) 

, ^ f  I ~ _ . ^ /  \ 1  
System (~J.z)~ is linear algebraic with respect to ~x)Ix I .... �9 x n) = <~x i)Ixl, ..., Xn> 

and can be solved by the standard methods of linear algebra. For this we change from the 
tensor form of system (3.2) to a matrix form [3]. We construct the matrix Z -! with elements 

--!~ k = i n) in the form of 6 • 6 submatrices Lmkkm, , ..., 

Z -~m~ = I6mh - -  (1 - -  6mh) R,~S (xm - -  xk), 

s (x~ - x~) = ( ~ ) - 1  ~ ~ g (x - y) v ~  (x) v~ (y) dxay, 

738 



and then represent the solution of system (3.2) as 

< ( a  ( . , ) i x ,  . . . . .  + = E ..... + 
J=l 

( 3 . 3 )  

The solution of system (3.2) can also be constructed by the method of successive approxi- 
mations [4, 5]. Then, taking into account the first two iterations, we have 

Ri (~ (xi) l x, . . . . .  x . )  + Fi = R, (e'(x)~ . . . . .  . ) i  + Fi + 

+ E n~s (x~- x~)[R~ (~(x), . . . . .  ~)~ + F~]. 
(3.4) 

We note that the use of the "quasicrystaiiine" approximation [14] 

is equivalent to the assumptions 

<Kx) lx, . . . . .  zn >i = <s(x) h ( 3 . 5 )  

~(<)lx~ . . . . .  x,,> = (~x)l . . . . . .  )i, z i i  = I 6 i i .  ( 3 . 6 )  
/ %  

Particular cases of formulas (3.3) are examined for L c = L ~~ in [4, 15-18] for two 
spherical inclusions [15, 16] and flat spheroidal cracks [17, 18]. it is shown that for two 
equal circular cracks in a plane, which lie in a normally loaded plane, the assumption that 
the fields $(x i) are homogeneous (hypothesis HI) near a crack leads to an error of 2% in the 
estimated stress intensity coefficient with the distance between cracks equal to 0.01 of 
their radius [18]. The high accuracy of the effective-field model of deformations or stresses 
[4, 17, 19] (called a pseudoioad in [19] is a result of the fact that the field slx)kxeviJ-~ .... 
within an inclusion changes insignificantly; the error of the approximation ~(x)(xev i) by 
polynomials of different degree is estimated in [17]. 

4. Estimate of the Effective Modulus. The solutions obtained for one inclusion (2.2) 
and a finite number of inclusions (3.3), which are located in effective fields r and 
$(x) i ..... n, and the adoption of the hypothesis H2 make it possible to solve system (1.11). 

^ /  

indeed, from Eq. (i.ii) we have a closed system of integral equations for the fields <a~xi, 
.... J>i(J = i .... , n; i = 1 ..... j): 

.~+l 
-- :  g:'0 -}- ( S (d '  i --" J'q) V (l'q; J21 . . . . .  xj) E Zql (!Z~l ( 8 ( ' 2 7 ) 1  . . . . .  j-FI>, J- F l ( z ) -  

- & (.~ - .~) ( ~ ,  + F ~ ) }  dx~, 

- -  S{ (x~ - -  :cq) (R'~ + Fa> 1 dxq, 
J 

( 4 . 1 )  

w h e r e  S i ( x i - - x q ) = ~  i i U ( x - - x q ) V i ( x ) d x ,  X q ~ V i .  The t e n s o r  r  , n  on t h e  r i g h t - h a n d  s i d e  o f  

t h e  l a s t  e q u a t i o n  o f  ( 4 . 1 )  i s  f o r m e d  f rom t h e  t e n s o r  Sz . . . . .  n on t h e  l e f t - h a n d  s i d e  by r e p i a c -  
< ^ [  \ . / r 

i n g  one  o f  t h e  i n d i c e s  by q .  S y s t e m  ( 4 . 1 )  i s  l i n e a r  w i t h  r e s p e c t  t o  s ~ x )  i . . . . .  j > ~ t 3  = i ,  

. . .  n ;  s = i ,  . , j )  and  e a c h  j - t h  row w i t h  < 8 ( x ) i ,  ">~ on t h e  l e f t - h a n d  s i d e  c o n t a i n s  
^ /  % 

j equations, since i = 1 ..... j. The value of ~e~x) i ..... n>i (i = 1 ..... n) is estimated 

from the last row in Eq. (4.1) by the method of successive approximations with all possible 
positions of the inclusions vi, ..., v n. it is also necessary to take into account the fact 

t h a t  <r  i . . . . .  n > i  ~ ~ s ~ x i ) v  i a s  [x j  -- x i [  ~ ~ ,  j = i . . . . .  n ,  j # i .  We s u b s t i t u t e  t h e  

v a l u e  f o u n d  f o r  < ~ ( x )  i . . . . .  n > i  i n t o  t h e  r i g h t - h a n d  s i d e  o f  t h e  (n  - i ) - t h  row o f  s y s t e m  
[ % --, __ . ^ l  > (4.1), determine <8~x)i ..... n_i>i (i = 1, . n 1) and so on. After estimating <e~x i) i 

I % 1 %  I %  
and <Mi~x)~x) + a~x)>i, in the relations (i.ii) and (2.2) we estimate from formula (1.7) the 
effective modulus L" with the help of the equality 
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<e>o = (c o + <VC> L~) ) -~ (%--  <VA~>), c~ = <Va> (a = 0, t . . . .  ). ( 4 . 2 )  

We now estimate, at the physical level of rigorousness, the lower limit of the accuracy 
of the proposed EFM. in [15, 20], in analyzing the equations of the theory of elasticity of 

composite materials with L c = L[-), analogous to Eqs. (1.9), it was assumed that ekX)x2>i 
�9 <^/ % . [~. / x / 

e0(i = i, 2) ekx)~;~ = g0" Then knlkx2)Eix2)ix2; Xl> was estimated from the second equa- 
tion in Eqs. (i.i) and the effective parameters (1.5) were estimated from the first equation 
in Eqs. (i.9) and (2.2). The assumption <$(x)~) I = g0 makes it possible to determine the 
coefficient of the first power of the concentration c of inclusions as a function of L* = 

~c) ,  and t h e  a s s u m p t i o n  < ~ x ) 1 2 >  i = r = i ,  2) makes i t  p o s s i b l e  t o  d e t e r m i n e  t h e  c o e f -  

f i c i e n t  o f  c ~. i n  [20] t h e  p rob lem o f  e s t i m a t i n g  t h e  p a i r  i n t e r a c t i o n  o f  d i f f e r e n t  s p h e r i c a l  
i n c l u s i o n s  . . . . .  ^" " ~i = ~0 ( i  = i ,  2) was s o l v e d  n u m e r i c a l l y  w i t h  <m~x~)e(x2)[x2; x~> with -e~x;~ 
the help of Legendre polynomials, and in [15] it was solved under an assumption that is stron- 
ger than kz.4): 

y U (x - -  y) Vz (y) M~ (y) e (y) dy = U (x~ - -  x2) M~ (x2) e (x~), x ~ .,. ( 4 . 3 )  

it was found that for hard spherical inclusions in an incompressible matrix the coefficient 
of c 2, according to the data of [15], is equal to 4.84 and differs from the more accurate 

~g~X)l, ..., numerical result 5.01 [20] by 3.3%. Similarly, the assumption ^" n > = e 0 instead 

of ^ "  ' " = < E t x r  e0 ( i  = i ,  2 ) ,  makes i t  p o s s i b l e  t o  r e p r e s e n t  t h e  dependence  L* = L*(c )  in  t h e  

form of a polynomial of degree n in c. Since in the EFM the field <$~x)i, .... n>i is not 

postulated but rather estimated from the self-consistent Eqs. (4.1), the EFM in the solution 
of the problem of interaction and inclusions (3.3) and (4.1), gives an accuracy of the esti- 

mate L* = L*(c) higher than the degree of the polynomial n. We call the solution of Eqs. (3.3) 
and (4.1) the solution of Eq. (i.i0) of the n-particle approximation, in the solution of the 
n-particle approximation problem one studies not the entire space, but rather a finite region 

/ [ �9 . i 
vkx I ..... x n) ~ v I ..... v n kwnlcn, generally speaking, depends on the number and dimensions 

of the inclusions Vl, ..., Vn), since the value of the integral on the right-hand side of Eq. 

(4.1) over the region w\v(x I ..... x n) becomes negligibly small. For example, in solving 
problem (1.8) of the two-particle approximation the spherical region v(xl, x 2) centered at x I 
and having a radius that is five times greater than the radius of the inclusions gives an 
error in estimating L* of not more than 3% as compared with integration of Eq. (4.1) with 
n = 2 over the region w. Thus, there exists a locality principle [21] and the region v(x I, 
.... x n) is finite. The Equality v(x I .... , x n) is thereby satisfied asymptotically for large 

n and the hypothesis H2 is justified, in order to approximate the field ~e~X)l,^" ' .-., n+l~i = 

~ekx)1, ..., n~i, according to the hypothesis H2 the index j for which maxlx j - xil, j = i, 

..., n+i. 

5. Analytical Estimate of L*. The solution of problem (4.1) on a cell of the n-th ap- 
proximation presupposes a solution of system (4.1) for arbitrary coordinates of the centers 
of the inclusions and arbitrary orientations of the inclusions. The two-particle approxima- 
tion and the assumption 

<~-(xh~>~ = <7(x0> = const (~ = t, 2). ( 5 . 1 )  

greatly simplify the problem. Then we obtain from the first equation in Eqs. (4.1) and (3.3) 

R,<~,> + F,a = (Rico + F , ~ ) +  R, [~S(x~- -  x~) Y, Z~,(R~G> + 
t# i  j 

(5.2)  
+ F,~) ~ (v~l v~; ~) - -  S, Ix, - -  zj) <n~ + F=> nj} d~ .  

Sys tem ( 5 . 2 )  i s  a l i n e a r  a l g e b r a i c  s y s t e m  and can be s o l v e d  f o r  an a r b i t r a r y  number o f  compo- 
n e n t s ,  u n d e r  t h e  a s s u m p t i o n  t h a t  t h e  i n c l u s i o n s  r e f e r  t o  d i f f e r e n t  componen t s ,  i f  t h e  m e c h a n i -  
c a l  p r o p e r t i e s ,  s i z e s ,  o r  o r i e n t a t i o n s  a r e  d i f f e r e n t .  The number o f  components  and hence  
a l s o  t h e  d i m e n s i o n  o f  s y s t e m  ( 5 . 2 )  can be r e d u c e d  by two t o  t h r e e  o r d e r s  o f  m a g n i t u d e  by 
p o s t u l a t i n g  t h a t  t h e  f i e l d s  ~1 a r e  i n d e p e n d e n t  o f  t h e  o r i e n t a t i o n  o f  t h e  i n c l u s i o n s  v i .  Then, 
a v e r a g i n g  Eq. ( 5 . 2 )  o v e r  t h e  o r i e n t a t i o n s  o f  t h e  i n c l u s i o n s  v i w i t h  t h e  h e l p  o f  t h e  o p e r a t i o n  
<(')>~ and assuming, in order to obtain visible results�9 that <RiSi)~ = <Ri~<Si> ~, <RiSjt" 

Rs = <RiSjERE>~ = <Ri>~<Sjs we have 
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+ <~,>o ~ <s (x, - x~)>~ E z~, (<<>~  (~,)~ + 
#i ,j  

+ <F,>~)~ %1~; ~,) -- <S,>~(~ + F~)} dz~, 

where in calculating Zij RiS(x i - xj) was replaced by <Ri> ~ <S(x i - xj)> . 

E q u a t i o n  ( 5 . 3 )  can be r e p r e s e n t e d  in  t h e  m a t r i x  form 

N 

Y~(<R~>o@S)~ + <F~>o~a) = (<Ri>~e o + <Fi>~oa) (i = 1, . . . ,  N). 
j = l  

r~ 
~a.4) 

Here the submatrices are 

) 
h = l  (5.5) 

in the case of the "quasicrysuaiiine" approximation (3.5) and (3.6) expression (5.5) is sim- 
plified: 

5. E\ o) 

We obtain from Eqs. ta.'~ 4) and (5.5) the solution of ka.o~" ~) as 

;,~ ( 5  ~ , . / )  
<Ri>~o (ei) q- <Fi>o r = 2B (y-1)i j  (<Rj>~8o _1_ <Fj>o{z) 

5=1 

and with the help of Eq. (4.2) we find the following expression for the effective modulus 
( 1 . 5 ) :  

X 

N 

L * = L c +  ~] n~Y~ I<Rj>~+ 
i , j = l  

I + ~_~c~ (A~>o (R~>-s ~ <F~>o-- niY~'<Fj)~ L(~176 -~ X 
i=1  \ j:l 

i=l j=l 

(5.8) 

6. Consequences of the EFM. We shall show that many of the best known methods of struc- 

tural mechanics follow from the EFM. We start with the case L c = Lt-), when a~y) ~ 0 and 

there is no need to postulate that the field of deformation is homogeneous. Then formula 
(5.8) is simplified substantially: 

L* = L (~ + ~ niY~ ~ <R~>~. ( 6. t )  
i , j = l  

The relations given in [4-6] follow from Eq. (6.1) under additional assumptions about the 
homogeneity of the inclusion; in turn, a more specific result for identical spherical inclu- 
sions, later obtained independently in [22], follows from [4-6]. in the approximate variant 

of the EFM [23-26] a "quasicrystaliine" approximation of the field ~(XllXl; x 2) = $(xi), or 
equivalently, Z i. = i6ij (3.6), was used; this makes it possible to close the first equation 
of Eqs. (4.1) ann limit the solution of Eq. (1.8) to the single-particle approximation. Then, 
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if it is assumed in addition that the inclusions are homogeneous and ~(vjlvs; v~) depends only 

on 'x. -- x.' in the r~ ! ~ 31 . representation of Yij ~0.6), then we obtain the results of [26!. if, in 
addltlon, averaglng over the orientations of the inclusions is not studied in Eq. L5.6), then 
formulas (6.i) are equivalent to those proposed in [23, 24]. in [4-6] it is shown that the 
two-particle approximation of the solution of problem (4.1) under the assumption (5.1) led, 
in a number of cases, to estimates of L* which are more than two times more accurate than 
[23, 25]. 

We note that the initial Eqs. in [24, 25, 27] differed from the exact equation (1.3): 

e (x) = e o + ~ U (x - -  y)  n z (y) e (y) dy ,  
( 6 .  2 ) 

which is correct only for a finite number of inclusions. Since the integral in Eq. (6.2) 
diverges at infinity, the form of w must be postulated [25] or the action of the generalized 
function U on constants m = const must be determined [24]: 

~ U ( x - - y ) m d y  = O. ( 6 . 3 )  

Formula (6.3) has not appeared previously in the theory of generalized functions, in the 
multipole expansion method [27, 28] a particular case of Eqs. (3.4) and (5.2) was used, and 
in the expression analogous to Eq. (5.2) the term Si(x i - xj)<R~ + F~>nj, did not appear, 

which also is incorrect. 

The Mori-Tanaka-Esheiby method [9, 29] (references in [i0]) is widely used. in this 
method the mean deformation field in homogeneous inclusions is e_stimated from the single- 
particle problem (2.2) under a stronger assumption than (3.6) <~(x~)h = (~>0: 

<~(x)>i = A~<~>o. 

T h e n  t h e  i d e n t i t y  <gV> - c o < e >  o = <e> a n d  Eq .  ( 1 . 7 )  i m p l y  

L* = L (~ -~ ( L z A V > [ I  - -  (<AV) - -  c)] -1, 

which for identically oriented inhomogeneities is a particular case of formulas (5.6) and 
(6.1). Thus the Mori-Tanaka-Eshelby method [9, i0] and the single-particle approximation of 
the EFM [23, 24], which are equivalent methods, gave results which were in part duplicated. 

We now study the case L c ~ L (~ There is no a priori justification for the specific 
choice of Lc, not counting the condition that the quadratic form L(LzE)s , employed in the 
proof of the Hashin and Shtrikman variational principle [2 30] have a constant sign. The 
only justification for choosing for L c [7, 8] the Voight or Reiss estimates of L" [8] is 
the fact that specific experimental data agree with the computed curves, in addition, the 
choice between the Voight or Reiss estimates is made on the basis of component by component 
comparison of the tensors of the elastic moduli of the components (and not their corresponding 
quadratic forms), and this leads to ambiguous results, even for isotropic materials. 

in the well-known method of conditional moments [7, 8] it is assumed that the deforma- 
tion fields are homogeneous not only inside the matrix but also inside the inclusions. The 

tt . I . ! / widely used quaslcrystal• approximation iJ.5) is used, and in obtaining specific esti- 
mates of L" identically oriented inclusions consisting of a single material are usually 
considered. Each of these assumptions is stronger than the analogous assumptions in the 
EFM. For this reason, the singie-partfcie EFM approximation (5.6")-L0.~ 8) includes as a par- 
ticular case the results found by the method of conditional moments [7, 8]. in [7, 8] the 
shape of the inclusions is taken into account via a prescribed anisotropy of the conditional 
distribution function ~(vlluj; vi). For equally probable orientation of the inclusions it is 
possible to obtain an isotropic function ~ [3] and the estimate of the effective modulus L* 
will be invariant with respect to the shape of the inclusions. This result can be avoided 
by taking into account directly the shape of the inclusions via the tensors P, as done in [2] 
on the basis of a variational principle. For identically oriented eiiipsoidai inclusions the 
results of [2, 8] are equivalent. 

in the effective-method (method of self-consistency) [3] it is assumed that L c = u and 
the particular case of the "quasicrystaiiine" approximation (3.5) is considered, which is 
equivalent to the assumption Yij = i0ij in Eq. (5.6). in the singular-approximation method 

[3], which is invariant with respect to the shape of the inclusions, the operator in the 
general Eq. (1.3) with the kernel U is replaced by a constant tensor 
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P 
g~ = J U s (z )dz  

where U S i s  t he  s i n g u l a r  component of  U [3 ] .  This  a u t o m a t i c a l l y  imp l i e s  a nmnber of  s t r o n g  
assumpt ions :  Pi  ~ -g~ ,  e q u a l i t i e s  ( 2 . 3 )  a r e  s a t i s f i e d ,  t he  f i e l d s  o f  t he  d e f o r m a t i o n s  in 
the  components a r e  homogeneous, t he  " q u a s i c r y s t a i i i n e "  app rox ima t ion  ( 3 . 5 ) ,  and t he  f u n c t i o n s  
~(@Iv}; v[) a r e  i s o t r o p i c .  For t h i s  r e a s o n ,  t he  e f f e c t i v e - m e d i u m  method and t he  s i n g u l a r -  

app rox ima t ion  method [3] a r e  a l s o  consequences  of  t he  EFM. 

7. Remark. We now analyze the assumptions of the EFM and their generalizations. The 
assumption of the hypothesis HI that the inclusions are ellipsoidal was used only in order to 
convert the integral Eq. ~z~o.i) into an algebraic equation, since the tensor ~u~x - Y)~i is 

apparently homogeneous for x, yev i only for an ellipsoid [13]. It can be assumed that in part 

of the region v~cvi, M1(x), ~(x) = 0, i.e., it is sufficient to include a real nonellipsoidal 

inclusion v i\v~ into an ellipsoid, possibly of smaller volume, and call it the inclusion v i- 

The further scheme for calculating the tensors A and C ~ 2) and L ~z. (1.a)'~ remains the same, 
but the prescribed conditional distribution functions ~(vjIv~, . v~) will have a larger cor- 
relation well vj than in a real composite material. This will result in underestimation of 
the computed values of L* for inclusions which are more rigid than the matrix and overestima- 
tion in the opposite case. 

The assumption that El(X) for xev i is homogeneous was required in order to make it easier 
to solve the algebraic systems (2.1) and (3.1), which, in principle, can aiso be solved for 

- ~ ~ ^~ ~ - ~J (sum- a polynomial function si[x), ~s~x)l, ..., n>i . Then, for example, the tensor A i "~i 

mation over j = 0, i, ...) [z~.2), where the index j takes into account the effect of the term 
of degree j in the polynomial ~i(x). Similarly, in analyzing system (3.2) U(x i - y) must be 

expanded in a Taylor series around xj and the problem must be solved for a finite number of 

ellipsoids, as done in [31]. 

We note than in order to solve system (i.ii), in any case, for homogeneous inclusions, it 
is not necessary to introduce intermediate concepts - effective fields E(xilx i .... , Xn), 

~s~x) I .... , n>i . System (i.ii) is linear in the fields <E~x)ix I ..... Xn>, and on closure 

[8], analogous to the hypothesis H2, it becomes finite and can be solved by the methods of 
linear algebra. This scheme is implemented by the method of conditional moments [7, 8]. 
According to the EFM, information about the geometric and mechanical characteristics is 

f~ 

given by the tensors ~z.2) and the field -~ ~ �9 <Ekx) I ..... n~i, in contrast to <g(x)ix I .... , Xn~ i, 
is weakly nonuniform. This is why, as noted in [17, 19], even rough assumptions about the 
structure of the effective field (5.1) make it possible to obtain correct results, in order 
to decrease the volume of calculations the tensor R i and F i can be replaced, everywhere in 
Eqs. (4.1) and the matrix Z (3.3), by their averages over the possible orientations of the 
inclusions vi; the analogous procedure by the method of [7, 8] is difficult to implement. 

8. Analysis of Regular Structures. Highly efficient numerical methods have now been 
developed for calculating the effective moduli and local stresses in composite materials with 
periodic structure [32]. This can serve as a test for the accuracy of EFM. We now consider 
a periodic set X of eliipsoidal nonuniformities with identical shape, orientation, and mechan- 
ical properties. We represent the distribution of the particle centers in space as a sequence 
of vectors of a space lattice x m = eimi, where m i (i = i, 2, 3) are positive integers, and 
ei (i = i 2, 3) are vectors oriented along the edges of a parallelipiped and are equal in 
modulus to the lengths of the edges. Then, for L c = L k~) formula (6.i) has the form 

L * = L ( ~  n ~ (  I - P ( w ) ~ n - 2 ' S i  ( x j - - x i ) R n )  -~. ( 8 . 1 )  

it was assumed that x i coincides with the center of the region w, containing a quite 
large number of inhomogene~ties (this will be specified quantitatively below). The summation 
in Eq. (8.i) extends over all xiew and xj ~ x i. Under the assumption (4.3), employed in 
[23, 24], expression (8.1) changes to 

L * =  L (~ + nR ( I  --  P (w) Rn -- ~P~' U (xs --  x~) Rn ] -1. ( 8 . 2 )  
k ~ I 
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TABLE 1 

Method c 
0,2 0,4 I 0,5 

~(1) _= 0 

. * * . * ~ * L;12 2 * Ll111 Ll1_22 L1212 L ~ n i  Ll122 L1212 Ll111 L1212 

[33] 2,26 0,83 1,33 1,48 0,42 0,94 1,i3 0,26 I 0,76 
(8.1) 2126 0.83 1.28 1.46 0.45 0,77 t,t4 0,33 I 0,60 
(8.2) 2,21 0.85 1,35 1,59 0138 0,42 t,35 0,22 0,0t 

~t (1) == I000 

[341 
(8.1) 
(8.2) 

5,30 
5.28 
5,53 

1,92 

1177 

2,00 
2,90 
2,82 

8,80 2,26 4,48 t7,08 
8164 2,40 4,28 t t , t  

--i6,9 15,2 7,24 2,48 

2.44 6,50 
2187 5,80 
7,2t 8,16 

For simple cubic packing of spherical inclusions the tensor of effective moduli L* is 

characterized by three elastic moduii. Table 1 gives for a porous medium (v ~~ = 0.3, ~0) = 

i, ~!) = 0), hard inclusions ~v~-) = v (!) = 0.3, ~-)/~-) = i000, ~(0) = i), and a number 

of values of the volume concentration of inhomogeneities the values of L~iil, L~i22 = L~23~ = 

L3sli,* L~212 = L~32~ = L~iai computed by analytical methods [33, 34] and formulas (8.1) and 

(8 .2 ) .  
According to the table, the error of the EFM (8.1) is maximum for hard nonuniformities 

with c = 0.5 and does not exceed 15%. The calculation, by the approximate variant of the 
EFM (8.2), gives contradictory results for c ~ 0.35: the component L~iii oscillates around 

zero as c increases. L* was calculated from formulas (8.1) and (8.2) for a spherical region 
w with diam w = 71ell, containing three layers of spheres around a distinguished inclusion 

vj; for diam w = 51ell (two layers) and diam w = 31ell (one) the estimates of L* (8.1) differ 
from those presented in Table 1 by 1.7 and 15%, respectively, i.e., an ensemble of nonuni- 
formities with two layers of spheres can already be considered as representative and the prin- 
ciple of locality holds [21]. We note that an indirect justification of the accuracy of the 
single-particle EFM with the help of estiates of L* for regular structures [24] is quite 
doubtful, indeed, in this case, for random structures the terms in the summation in (8.1) 
and (8.2) are equal to zero, while for regular structures the values of these smns are com- 
parable to P(w)Rn. 

in conclusion we note that the advantage of the particular variants of EFM over dif- 
ferent methods has also been demonstrated in comparison with experimental data [4-6, 35, 36] 
and existing analytical solutions for a regular system of collinear cracks in a plane [37]. 
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